Antibiotic Resistance in low- and middle-income countries and the prospect of Machine Learning approaches to fight against this threat

  12 June 2019

Big data informatics has enabled scientists to predict antimicrobial resistance and associated genomic features from Whole-Genome Sequencing. The genomics revolution has led to thousands of strain-specific whole-genome sequences available for a range of pathogenic bacteria. These genomes are increasingly coupled with clinical antimicrobial resistance (AMR) metadata, including MIC values for various antibiotics. This large-scale coupling of AMR data with strain-specific genome sequences opens the study of antibiotic resistance to machine learning and other big data science approaches. 

Further reading: MacroEconomicsLab
Effective Surveillance   Smart Innovations  
Back

OUR UNDERWRITERS

Unrestricted financial support by:

Antimicrobial Resistance Fighter Coalition

Bangalore Bioinnovation Centre

INTERNATIONAL FEDERATION PHARMACEUTICAL MANUFACTURERS & ASSOCIATIONS

BD





AMR NEWS

Your Biweekly Source for Global AMR Insights!

Stay informed with the essential newsletter that brings together all the latest One Health news on antimicrobial resistance. Delivered straight to your inbox every two weeks, AMR NEWS provides a curated selection of international insights, key publications, and the latest updates in the fight against AMR.

Don’t miss out on staying ahead in the global AMR movement—subscribe now!

Subscribe

What is going on with AMR?
Stay tuned with remarkable global AMR news and developments!

Keep me informed